ROTATIONAL BARRIERS FOR P(V)-N BONDS; THE SOLUTION AND SOLID STATE STRUCTURE OF $\left[Me_2N \cdot P(S)NBu^{t}\right]_2$ R. KEAT, K.W. MUIR, and D.G. THOMPSON Department of Chemistry, University of Glasgow, GLASGOW G12 8QQ, UK.

(Received in UK 20 June 1977; accepted for publication 11 July 1977)

The measurement of rotational barriers for P(III)-N bonds by n.m.r. methods is now commonplace,¹ but such barriers involving P(V)-N bonds at four co-ordinated phosphorus are not generally accessible by this technique and none has been reported for a dimethylamino-group.² Even with relatively bulky di(isopropyl)amino-groups in RP(S)ClNPrⁱ₂¹ and in dithia-phosphorinanes, ${}^{3} \Delta G_{T_{C}}^{\neq}$ is <12.6 Kcal.mol.⁻¹ We now report that substantial barriers to rotation of even dimethylamino-groups exist in the cyclo-diphosph(V)azanes (I) (X = Y = 0, S or Se)⁴ and that in one case, (I) (X = Y = S), the conformations of the Bu^t dimethylamino-groups have been established by X-ray crystallography. Me₂N(X)P NMe₂

Typically, the N-methyl signals of (I) (X = Y = S) consist of a doublet

³J(PH) ca. 12 Hz., complicated by the effects of magnetic inequivalence of the phosphorus atoms, but ³¹P decoupling produced a sharp singlet. On cooling (Table) the singlet broadened and formed two new singlets of equal The free energy of activation, ΔG^{\neq}_{π} , for the rate process intensity. was calculated using the approximation that the rate constant at the coalescence temperature, $k_c = 2^{-\frac{1}{2}}\pi\Delta\nu$ [$\Delta\nu$ = separation of peaks (in Hz) in the absence of exchange, which is valid under these conditions.⁵ The data in the Table show that the rate process is best associated with restricted rotation about the exocyclic P-N bonds. The possibility that it might be caused by slow nitrogen inversion is discarded in view of previous work,⁶ and because of the planarity of the exocyclic nitrogen atoms in the solid state in one case [(I) (X = Y = S)]. Further, there is no evidence for the formation of monomeric species analogous to $(Me_3Si)_2N \cdot P(S) =$ NBut.7

(I)

3087

Compounds(I)	m.p.(⁰ C)	δ _p ª	T _c (^O C)	$\Delta G_{T_C}^{\neq} \stackrel{b}{=} (Kcal.mol^{-1})$	³ J(PH)(Hz)⊆	⁶ NCH 3 ^C	Solvent
(X = Y = 0) <u>trans</u>	205	1.6	21	15.9	11.5, 9.5	2.76,2.83	CDC13
(X = Y = 0) <u>cis</u>	194-6	4.0	-60	11.6	10.5, 9.1	2.72,2.76	CH2C12
(X = Y = S) <u>trans</u>	255-6	53.8	-17	13.8	11.3,13.4	2.88,2.95	CDC13
(X = Y = S) <u>cis</u>	214	48.8	-54	11.8	10.0,13.7	2.89,2.95	CH2C12
(X = Y = Se) trans	264	49.0	-25	13.5	11.0,14.8	2.99,3.05	CDC13
(X = Y = Se) <u>cis</u>	₫	39.6	-49	12.0	10.0,15.1	2.90,2.98	CH2C12
(X = S, Y = lone pair trans	a r) 73−5	49.0 91.4	<-90 9	<8.9 ^은 14.9	- 1.9,13.3	- 2.56,2.68	CH2C12
(X = S, Y = lone pair cis	e) 127–9	68.9 103.6		14.6 ^e 18.6	10.5,12.4 14.3, 3.4		с ₆ н ₅ сі

Table : N.m.r. data

 ^{31}P shifts downfield (+ve) of external 85% $H_{3}PO_{4}$ <u>a</u>

$$\frac{b}{2}$$
 + 0.3 Kcal.mol⁻¹

.

When X = Y, $|^{3}J(PH) + {}^{5}J(PH)|$, couplings and chemical shifts observed <u>c</u> below Tc

 \underline{d} Mixture with trans isomer (ca. 30%)

 $\frac{e}{V}$ For P(V)NMe₂

The observation of two separate methyl-signals with different couplings to phosphorus indicates that the dimethylamino-groups adopt a conformation in which the methyl-groups lie in, or near, the plane which passes through the phosphorus atoms and is normal to the mean (P-N) 2 ring plane. This

conclusion is supported by the X-ray analysis of the <u>cis</u>-isomer of (I) $(X = Y = S) \text{ m.p. } 214^{\circ}$. In the solid state the molecule has close to C_{2v} point symmetry, the $(SPN'C_{\alpha}, C_{\beta'})_2$ unit which is normal to the $(P-N)_2$ ring being planar to within ± 0.09 Å in spite of close $S\cdots C_{\alpha}$, and $C_{\beta'}\cdots C_{\beta'}$, contacts of 3.22 and 3.50 Å. Relief of these contacts, which can be achieved by an increase in the S-P-N'C_a torsion angles (both -5°), might have been expected since the shortest C-methyl···N-methyl distances are <u>ca</u>. 3.8 Å. In <u>cis</u>-[PhP(S)NEt]₂ the corresponding torsion angles are 35° .⁸

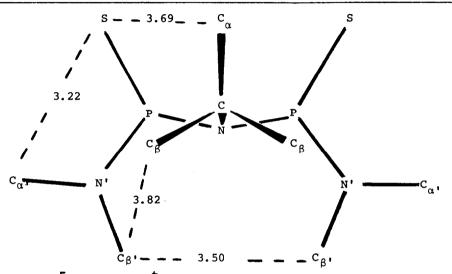


Figure: The $\left[Me_2N \cdot P(S) N Bu^{\dagger}\right]_2$ molecule projected on to the $(SPN'C_{\alpha}, C_{\beta}, C_{\beta})_2$ plane so that one NBu^{\dagger}_2 group is overlapped. Shorter non-bonded distances (Å), averaged assuming C_{2v} symmetry, are shown. Mean bond lengths are P-N 1.692(1), P-N' 1.633(4), P-S 1.930(2), N-C 1.497(3), and N'-C 1.459(6) Å. Hydrogen atoms are omitted.

Comparison of the vibrational spectra of <u>cis-</u> and <u>trans-(I)</u> (X = Y = S) with those of (I) (X = Y = O, or Se) enables geometrical isomers to be distinguished.

The P-N rotational barriers are clearly mainly steric in origin, although that for the <u>trans</u>-oxide (I) (X = Y = O) is significantly greater than the analogous sulphides and selenides. In isomers of the type (I) (X = S, Y = lone pair) rotational barriers for P(V)-N and P(III)-N bonds can be compared in the same molecule and that for the P(V)-N bond is $4 - 6 \text{ Kcal.mol}^{-1}$ less than for the P(III)-N bond. The deshielding effect which is to be expected for the methyl-proton close to phosphoryl-oxygen suggests that the smaller P···H coupling applies to the dimethylamino protons in this position in <u>cis</u>-(I) (X = Y = O). Clearly, the conformat-

ional dependence of 3 J(PH) is much less than for tervalent phosphorus [see Table, (I) (X = S, Y = lone pair) and reference 6].

REFERENCES AND NOTES

- 1. J. Burdon, J.C. Hotchkiss and W.B. Jennings, J.C.S. Perkin II, 1052 (1976), and references therein.
- 2. Restricted rotation about a P(V)-NMe, bond at ambient temperatures has been claimed [J. Emsley and J.K. Williams, J.C.S. Dalton, 1576, (1973) for but variable temperature experiments Me Me 0

NMe,

will be needed to confirm this.

Mó

н

Me

J. Martin and J.B. Robert, Tetrahedron Letters, 2475 (1976). 3.

Mo

- 4. Obtained by oxidation of the analogous isomeric cyclodiphosph(III) azanes G. Bulloch, R. Keat and D.G. Thompson, J.C.S. Dalton, 99 (1977) by t-butylhydroperoxide (X = 0) elemental sulphur (X = S)or selenium (X = Se).
- 5. D. Kost, E.H. Carlson, and M. Raban, Chem. Comm., 656 (1971).
- 6. A.H. Cowley, M.J.S. Dewar, W.R. Jackson, and W.B. Jennings, J. Amer. Chem. Soc., 92, 5206 (1970).
- O.J. Scherer and N. Kuhn, Angew. Chem. Internat. Edn., 13, 811 (1974). 7.
- G.J. Bullen and P.A. Tucker, Acta Cryst., B29, 2878 (1973). 8.
- M. El-Deek, G.D. Macdonell, S.D. Venkataramu, and K.D. Berlin, J. Org. 9. Chem., 41, 1403 (1976).